Factorise the following:
4(x-y)2 - 16(x+y) 2
Answers
Answered by
1
Answer:
-4(2x² + 3y² + 10xy) is the answer
Step-by-step explanation:
4(x-y)² - 16(x +y) ²
= 4(x² + y² - 2xy) - 16 (x² + y² + 2xy)
= 4x² + 4y² -8xy -16x² -16y² -32xy
= -8x² -12y² - 40xy
= -4(2x² + 3y² + 10xy)
Answered by
5
Answer:
Step-by-step explanation:
step 1)4 • ((x + y)^2)) - 16 • (x - y)^2
step2) Evaluate : (x+y)^2 = x^2+2xy+y^2
step3) Evaluate : (x-y)^2 = x^2-2xy+y^2
step4) 4x^2-8xy+4y^2-16x^2-32xy-4y^2
step5) -(12x^2+40xy-12y^2)
step6) take common outside
step7) -4(3x^2 - 10xy + 3y^2)
step8) split the middle term
step9) -4(3x^2+9xy-xy+3y^2)
step10) -4[3x(x+3y)-y(x+3y)]
step11) -4(x+3y)(3x-y))
Similar questions