Math, asked by parvlolabc, 10 months ago

Factorise the following
4x²+5√2x-3​

Answers

Answered by Anonymous
34

GIVEn

Factorise the following

4x²+5√2x-3

SOLUTIOn

→ 4x² + 5√2x - 3

Splitting middle term

→ 4x² + 6√2x - √2x - 3

→ 2√2x(√2x + 3) - 1 (√2x + 3)

→ (√2x + 3)(2√2x - 1)

SOMe IDENTITIEs

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
Answered by amitkumar44481
4

Solution :

We have, Expression.

Factories ( Splitting the middle term )

=> 4x² + 5√2x - 3.

=> 4x² - √2 + 6√2x - 3.

=> √2x ( 2√2 - 1 ) + 3( 2√2 - 1 )

=> ( √2x + 3 )( 2√2x - 1 )

\rule{90}1

Let Try by Quadratic Formula.

  \tt\dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Where as,

  • a = 4.
  • b = 5√2.
  • c = - 3.

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}  \pm \sqrt{ ({5 \sqrt{2} )}^{2} - 4 \times 4 \times  - 3 } }{8}

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}  \pm \sqrt{50  + 48 } }{8}

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}  \pm \sqrt{ 98} }{8}

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}  \pm 7\sqrt{ 2 } }{8}

\rule{90}3

Either,

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}   + 7\sqrt{ 2 } }{8}

 \tt :  \implies x =  \dfrac{ 2 \sqrt{2}}{8}

 \tt : \implies x = \dfrac{  \sqrt{ \cancel 2}}{\cancel 4}

 \tt :  \implies x =  \dfrac{1}{2\sqrt{2}}

\rule{90}3

Or,

 \tt :  \implies x =  \dfrac{ - 5 \sqrt{2}   -  7\sqrt{ 2 } }{8}

 \tt :  \implies x =  \dfrac{ - 12 \sqrt{2}  }{8}

 \tt :  \implies x =  \dfrac{  - 3 \sqrt{2}}{2}

Therefore, the value of x is -3√2/2 and 1/2√2.

Similar questions