Math, asked by jothipalanisampde3wo, 1 year ago

factorise the following

a² + 1 / a² - 18

ans : (a - 1/a + 4) ( a - 1/a - 4)

Answers

Answered by Anonymous
33

a^2+1/a^2-18=a^2+1/a^2-2*a*1/a-16=(a+1/a)^2-(4)^2=(a-1/a+4)(a-1/a-4)

In the first step,2*a*1/a=2

and -2-16=-18 so I splitted them

Second:

(a-1/a)^2=a^2+1/a^2-2

Last step:

a^2-b^2=(a+b)(a-b)


jothipalanisampde3wo: ok . please answer my another question too in the same topic
jothipalanisampde3wo: it is in my profile
Answered by ColinJacobus
25

Answer:  The required factored form of the given expression is

\left(a-\dfrac{1}{a}+4\right)\left(a-\dfrac{1}{a}-4\right).

Step-by-step explanation:  We are given to factorize the following expression  :

E=a^2+\dfrac{1}{a^2}-18~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)

We will be using the following two formulas :

(i)~(x-y)^2=x^2+y^2-2xy,\\\\(ii)~x^2-y^2=(x+y)(x-y).

The expression (i) can be factorized as follows :

E\\\\\\=a^2+\dfrac{1}{a^2}-18\\\\\\=a^2+\left(\dfrac{1}{a}\right)^2-2\times a\times \dfrac{1}{a}-18+2\\\\\\=\left(a-\dfrac{1}{a}\right)^2-16\\\\\\=\left(a-\dfrac{1}{a}\right)^2-4^2\\\\\\=\left(a-\dfrac{1}{a}+4\right)\left(a-\dfrac{1}{a}-4\right).

Thus, the required factored form of the given expression is

\left(a-\dfrac{1}{a}+4\right)\left(a-\dfrac{1}{a}-4\right).

Similar questions