factorise the following by using a suitable identity
a) 4x²+12xy+9y²
b)2a⁵-54a²
c)2√2x³+3√3y3
d)x⁵-x
e)x⁶-y⁶
f) (a-b)³+(b-c)³+(c-a)³
g)x⁰-y⁰
h)27x³-135x³+225x-125
Answers
Answer:
4x^2 +4x+3y + 3y^2
16x +7xy+9y ^2
Answer:
a) 4x²+12xy+9y²
a = 2x
b = 3y
4x²+12xy+9y²
(2x + 3y)²
(2x + 3y)(2x + 3y)
b)2a⁵-54a²
2a² (a³ - 27)
2a² ( a³ - 3³)
a = a
b = 3
2a²(a-3)(a²+3²+3a)
c) 2√2x³+3√3y³
(√2x)³+(√3y)³
(√2x+√3y)(2x^2 - √6xy+3y^2)
d) x⁵-x
x (x⁴- 1)
x(x²+ 1)(x²- 1)
Now again apply same identity…
x(x² + 1)(x + 1)(x - 1)
e) x⁶-y⁶
(x³)² - (y³)²
Here ,we are using following algebraic identities :
i) a²-b² = (a-b)(a+b)
ii)a³-b³ = (a-b)(a²+ab+b²)
iii)a³+b³ = (a+b)(a²-ab+b²)
(x³-y³)(x³+y³)
(x-y)(x²+xy+y²)(x+y)(x²-xy+y²)
f) (a-b)³+(b-c)³+(c-a)³
x+y+z=0
x = a-b
y = b-c
z = c-a
(a-b+b-c+c-a) = 0
then x³+y³+z³=3xyz
(a-b)³+(b-c)³+(c-a)³ = 3(a-b)(b-c)c-a)
g) x⁰-y⁰
any variable power zero except zero itself is equal to 1
1 - 1 = 0
h) 27x³-135x²+225x-125
(3x)³- (3)(5)(3x)² + (3)(25)(3x) - 5³
by using (a-b)³ = a³-3a²b+3ab²-b³ identity
(3x-5)³
(3x-5)(3x-5)(3x-5)