factorise the following expresions : x4 - y4 + x2 - y2
Answers
Answered by
0
x^{4}-y^{4}+x^{2}-y^{2}\\</p><p>=(x+y)(x-y)[(x^{2}+y^{2}+1]
Step-by-step explanation:
x^{4}-y^{4}+x^{2}-y^{2}\\=[(x^{2})^{2}-(y^{2})^{2})]+x^{2}-y^{2}\\=(x^{2}+y^{2})(x^{2}-y^{2})+x^{2}-y^{2}
\* By algebraic identity :
\boxed {a^{2}-b^{2}=(a+b)(a-b)} *\
=(x^{2}-y^{2})[(x^{2}+y^{2}+1]
=(x+y)(x-y)[(x^{2}+y^{2}+1]
Therefore,
x^{4}-y^{4}+x^{2}-y^{2}\\</p><p>=(x+y)(x-y)[(x^{2}+y^{2}+1]
•••♪
Answered by
0
Answer:
x4-y4+x2-y2
=[(x2)2 - (y2)2] +x2-y2
=(X2+y2)(x2-y2)+x2-y2
Similar questions