Math, asked by rishavshawant9987, 1 month ago

Factorise the following:
i) 27x3 - 27 x2y + 9xy2 - y3
ii ) 4x2 + 9y2 + 16z2+ 12xy - 24yz - 8xz.

Answers

Answered by aakhyapatel18jun2012
0

Answer:

I) 27x3 - 27x2y + 9xy2 - y3

ii) (2×+3y-4z) (2×+3y-4z)

Answered by MrImpeccable
22

ANSWER:

To Factorize:

  • 27x^3 - 27x^2y + 9xy^2 - y^3
  • 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 8xz

Solution:

1. 27x^3 - 27x^2y + 9xy^2 - y^3

We are given that,

\implies 27x^3 - 27x^2y + 9xy^2 - y^3

\implies 3^3x^3 - 3\times3^2x^2y + 3\times3xy^2 - y^3

\implies (3x)^3 - 3(3x)^2y + 3(3x)(y)^2 - (y)^3

We know that,

\hookrightarrow a^3-3a^2b+3ab^2-b^3=(a-b)^3

So,

\implies (3x)^3 - 3(3x)^2y + 3(3x)(y)^2 - (y)^3

\implies (3x-y)^3

Hence,

\implies\bf 27x^3 - 27x^2y + 9xy^2 - y^3= (3x-y)^3

\\

2. 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 8xz

We are given that,

\implies 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 8xz

\implies 2^2x^2 + 3^2y^2 + 4^2z^2 + 2(2x)(3y) - 2(3y)(4z) - 2(2x)(4z)

\implies (2x)^2 + (3y)^2 + (-4z)^2 + 2(2x)(3y) + 2(3y)(-4z) + 2(2x)(-4z)

We know that,

\hookrightarrow a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2

So,

\implies (2x)^2 + (3y)^2 + (-4z)^2 + 2(2x)(3y) + 2(3y)(-4z) + 2(2x)(-4z)

\implies (2x+3y-4z)^2

Hence,

\implies\bf 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 8xz = (2x+3y-4z)^2

Similar questions