Math, asked by abcd1056, 1 year ago

factorise the following (I) 27y³ + 125z³ , (ii) 64m³ - 343m³

Answers

Answered by BloomingBud
52
\mathbb{ SOLUTION } :

(i) 27y³ + 125z³

We know that,
x³ + y³ = (x+y) ( x² - xy + y² )
So, here
x = 3y , y = 5z

= 27y³ + 125z³ = (3y + 5z) { (3y)² - 3y*5x + (5z)² }

= 27y³ + 125z³ = (3y + 5z) { 9y² - 15xy + 25z² }

➖➖➖➖➖➖➖➖➖➖➖

(ii) 64m³ - 343n³

We know that,
x³ - y³ = (x-y) ( x² - xy + y² )
So, here
x = 4m , y = 7n

= 64m³ - 343n³ = (4m - 7n) { (4m)² + 4m*7n + (7n)² }

= 64m³ - 343n³ = (4m - 7n) { 16m² + 28mn + 49n² }

rrai62730pgn9gg: hi
Answered by shashankavsthi
20
\blue{\huge{Solution}}

I)
27 {y}^{3}  + 125 {z}^{3}  \\ using \: identity \:  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}  - ab) \\ a = 3y \\ b = 5z \\ 27 {y}^{3}  + 125 {z}^{3}  = (3y + 5z)(9 {y}^{2}  + 25 {z}^{2}  - 15yz)

____________________________________

II)
64 {m}^{3}  - 343 {n}^{3}  \\   {(4m)}^{3}  -  {(7n)}^{3}  \\ using \: identity -  \\  {(a)}^{3}  -  {(b)}^{3}  = (a - b)( {a}^{2}  +  {b}^{2}  + ab) \\ a = 4m \\ b = 7n \\ 64 {m}^{3}  - 343 {n}^{3}  = (4m - 7n)(16 {m}^{2}  + 49 {n}^{2}  + 28mn)
Hope it will help you‼️‼️
Similar questions