Math, asked by Gouritrivedi9733, 1 year ago

factorise the following identity a6+b6

Answers

Answered by BloomingBud
21
Hello dear,

 {a}^{6}  +  {b}^{6}  \\  \\  =  >  {( {(a)}^{2}) }^{3}  +  {( ({b)}^{2}) }^{3}  \\  \\  =  >  {({a}^{2} +  {b}^{2})   }^{3}  \\  \\ as \:  \: we \:  \: know \:  \\ (a + b {)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab( a+b ) \\  \\  =  >  { ({a}^{2} +  {b}^{2}  )}^{3}  =  {( {(a)}^{2} )}^{3}  +  {( {(b)}^{2}) }^{3}  + 3 \times  {a}^{2}  \times  {b}^{2}  + ( {a}^{2}  +  {b}^{2} ) \\  \\  =  >  {a}^{6}  +  {b}^{6}  + 3 {a}^{2}  {b}^{2}  + ( {a}^{2}  +  {b}^{2} )
Answered by Anonymous
65

Bonjour! \\  \\  =  > {a}^{6}  +  {b}^{6}  \\  \\  =  > ( { {a}^{2}) }^{3}  +  { ({b}^{2} )}^{3} \\  \\  =  > ( {a}^{2}   +  {b}^{2} )(( { {a}^{2}) }^{2}  -  {a}^{2}  {b}^{2}  +  {( {b}^{2} )}^{2} ) \\  \\  =  > ( {a}^{2}  +  {b}^{2} )( {a}^{4}  -  {a}^{2}  {b}^{2}  +  {b}^{4} ) \\  \\ (identity \: used -  -  -  >  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )) \\  \\  =  > Hope \:  this  \: helps...:)

Similar questions