Math, asked by kumarsunil98471, 7 months ago

factorise the following polynomial.6x^3+7x^2-x-2​

Answers

Answered by pranshurajan567
4

Answer:

go to google dear

Step-by-step explanation:

go to google dear

Answered by Prematchaya
1

Answer:

Step-by-step explanation:

Changes made to your input should not affect the solution:

(1):STEP

1

:

Equation at the end of step 1

 (((6 • (x3)) -  7x2) -  x) +  2 "x2"   was replaced by   "x^2".  1 more similar replacement(s).

STEP  

2

:

Equation at the end of step

2

:

 (((2•3x3) -  7x2) -  x) +  2

STEP

3

:

Checking for a perfect cube

3.1    6x3-7x2-x+2  is not a perfect cube

Trying to factor by pulling out :

3.2      Factoring:  6x3-7x2-x+2  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -x+2  

Group 2:  6x3-7x2  

Pull out from each group separately :

Group 1:   (-x+2) • (1) = (x-2) • (-1)

Group 2:   (6x-7) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

3.3    Find roots (zeroes) of :       F(x) = 6x3-7x2-x+2

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  2.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -10.00      

     -1       2        -0.50        0.00      2x+1  

     -1       3        -0.33        1.33      

     -1       6        -0.17        1.94      

     -2       1        -2.00        -72.00      

     -2       3        -0.67        -2.22      

     1       1        1.00        0.00      x-1  

     1       2        0.50        0.50      

     1       3        0.33        1.11      

     1       6        0.17        1.67      

     2       1        2.00        20.00      

     2       3        0.67        0.00      3x-2  

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  6x3-7x2-x+2  

can be divided by 3 different polynomials,including by  3x-2  

Polynomial Long Division :

3.4    Polynomial Long Division

Dividing :  6x3-7x2-x+2  

                             ("Dividend")

By         :    3x-2    ("Divisor")

dividend     6x3  -  7x2  -  x  +  2  

- divisor  * 2x2     6x3  -  4x2          

remainder      -  3x2  -  x  +  2  

- divisor  * -x1      -  3x2  +  2x      

remainder          -  3x  +  2  

- divisor  * -x0          -  3x  +  2  

remainder                0

Quotient :  2x2-x-1  Remainder:  0  

Trying to factor by splitting the middle term

3.5     Factoring  2x2-x-1  

The first term is,  2x2  its coefficient is  2 .

The middle term is,  -x  its coefficient is  -1 .

The last term, "the constant", is  -1  

Step-1 : Multiply the coefficient of the first term by the constant   2 • -1 = -2  

Step-2 : Find two factors of  -2  whose sum equals the coefficient of the middle term, which is   -1 .

     -2    +    1    =    -1    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  1  

                    2x2 - 2x + 1x - 1

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2x • (x-1)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-1)

Step-5 : Add up the four terms of step 4 :

                   (2x+1)  •  (x-1)

            Which is the desired factorization

Final result :

 (x - 1) • (2x + 1) • (3x - 2)

Similar questions