Math, asked by shriharikrishna328, 8 days ago

factorise the following quadratic equation:-
 \frac{1}{x}  -  \frac{1}{x - 2}  = 3 \\

Answers

Answered by rajkapurbhardwaj02
1

Step-by-step explanation:

Step-by-step explanation:1/x - 1/x-2 = 3

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)6

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)66±√12

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)66±√126

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)66±√1263±√3

Step-by-step explanation:1/x - 1/x-2 = 31(x-2)-1x / x(x-2)=3x-2-x/x²-2x=3-2=3x²-6x3x²-6x+2 =0Using the quadratic formula we can solve for x-b±√(b2-4ac)2a6±√[62-4(3)(2)]2(3)6±√(36-24)66±√1263±√33

Please mark me as Brainliest and said Thanks

Answered by gs22072007
1

Step-by-step explanation:

1/x-1/x-2=3

(x-2-x)/x^2-2x=3

-2= 3x^2-6x

3x^2-6x+2=0

The above equation can be written as ax^2+bx+c=0

therefore, a=3, b=-6 and c=2

Now, using the quadratic formula, we have

x= (-b+ or- √b^2-4ac)/2a ______(i)

Putting the value a,b and c in equation 1st , we get

x= (6+ or- √36-24)/6

x= (6+ or -√12)/6

x= (6+ or-2√3)/6

Taking positive

x= (6+2√3)/6

x= (3+√3)3

Taking negative

x=(6-2√3)/6

x= (3-√3)/3

Therefore the roots of the quadratic equation are (3+√3)/3 and (3-√3)/3

Similar questions