Math, asked by srosyjan22, 4 months ago

factorise the following r⁴+27p³r​

Answers

Answered by thebrainlykapil
165

Factoring: r³ + 27p³r

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

{\tt{\red{\underline{\underline{\huge{Answer:}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Theory :

  • A sum of two perfect cubes, a3 + b3 can be factored into :

\sf\green{  (a+b) • (a2-ab+b2)}

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Proof :

(a+b) • (a2-ab+b2) =

a3-a2b+ab2+ba2-b2a+b3 =

a3+(a2b-ba2)+(ab2-b2a)+b3=

a3+0+0+b3=

\sf\color{blue}{→a3+b3}

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Check :

  • 27 is the cube of 3

Check :

  • r3 is the cube of r1

Check :

  • p3 is the cube of p1

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Factorization is :

 \mathrm{\boxed{\boxed{\pink{→   (r + 3p)  •  (r2 - 3rp + 9p2) ✔}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

Similar questions