Math, asked by itzshrutiBasrani, 9 months ago

Factorise the following!

☺ Solve it☺

☺ Needed Explanation ☺​

Attachments:

Answers

Answered by Anonymous
99

Given :

  • 24a³ + 81b³
  • y³ + 1/8y³
  • a³ + 8/a³
  • 1 + q³/125

Solution

Apply identity : a³ + b³ = (a + b)(a² - ab + b²)

→ 24a³ + 81b³

Take 3 as a common

→ 3[8a³ + 27b³]

→ 3[(2a)³ + (3b)³]

→ 3[{2a + 3b}{(2a)² - 2a*3b + (3b)²]

→ 3[{2a + 3b}{4a² - 6ab + 9b²}]

  • y³ + 1/8y³

Apply identity : a³ + b³ = (a + b)(a² - ab + b²)

→ (y)³ + (1/2y)³

→ (y + 1/2y)[(y)² - y*(1/2y) + (1/2y)²]

→ (y + 1/2)[y² - 1/2 + 1/4y²]

  • a³ + 8/a³

Apply identity : a³ + b³ = (a + b)(a² - ab + b²)

→ (a)³ + (2/a)³

→ (a + 2/a)[(a)² - a*2/a + (2/a)²]

→ (a + 2/a)[a² - 2 + 4/a²]

  • 1 + q³/125

Apply identity : a³ + b³ = (a + b)(a² - ab + b²)

→ (1)³ + (q/5)³

→ (1 + q/5)[(1)² - 1*q/5 + (q/5)²]

→ (1 + q/5)[(1 - q/5 + q²/25]

Answered by Anonymous
69

Qᴜᴇsᴛɪᴏɴ :

➥ 24a³ + 81b³ y² + 1/8³

Sᴏʟᴜᴛɪᴏɴ :

:\implies 3(8a³ + 27b³)

:\implies 3[2(a)³ + (3b)³]

:\implies 3(2a + 3b) {(2a)² + (3b)² - 2a*3b}

:\implies \underline{ \overline{ \boxed{ \purple{ \: \: \bf{3(2a + 3b)(4 {a}^{2} + 9 {b}^{2} - 6ab \:  \:}}}}}

Qᴜᴇsᴛɪᴏɴ :

➥ y³ + \sf\dfrac{1}{8{y}^{3}}

Sᴏʟᴜᴛɪᴏɴ :

 \sf{:  \implies ( {y)}^{3} +   \left(\dfrac{1}{2y} \right)^{3}   }

 \sf{:  \implies  \left(y + \dfrac{1}{2y} \right) \left \{  {(y)}^{2}  +   \left(\dfrac{1}{2y} \right)^{2} - y * \dfrac{1}{2y}   \right \}}

:\implies \underline{ \overline{ \boxed{ \purple{ \bf{ \sf{  \left(y +  \dfrac{1}{2y}  \right) \left( {y}^{2} +  \dfrac{1}{ {4y}^{2}} -  \dfrac{1}{2}    \right)}}}}}}

Qᴜᴇsᴛɪᴏɴ ❼ :

➥ a³ + \sf\dfrac{8}{{a}^{3}}

Sᴏʟᴜᴛɪᴏɴ :

:\implies a³ + \sf\dfrac{8}{{a}^{3}}

:\implies \sf{{(a)}^{3} + \left(\dfrac{2}{a}\right) ^{3}}

 \sf{ : \implies \left( a +  \dfrac{2}{a} \right) \left \{  {(a)}^{2}  +   \left(\dfrac{2}{a} \right)^{2} - a * \dfrac{2}{a} \right \} }

:\implies \underline{ \overline{ \boxed{ \purple{ \bf{ \sf{ \left( a +  \dfrac{2}{a} \right) \left \{  {a}^{2}    +  \dfrac{4}{ {a}^{2} } ^{2} - a \right \} }}}}}}

Qᴜᴇsᴛɪᴏɴ ❽ :

➥ 1 + \sf\dfrac{{q}^{3}}{{125}}

Sᴏʟᴜᴛɪᴏɴ :

:\implies 1 + \sf\dfrac{{q}^{3}}{{125}}

 \sf{: \implies  {(1)}^{3} +  \left(\dfrac{q}{5} \right)^{3}}

\sf{: \implies  \left(1 +  \dfrac{q}{5}  \right) \left \{  {(1)}^{2}  +   \left(\dfrac{q}{5}  \right)^{2} - 1* \dfrac{q}{5}  \right \}}

 : \implies\underline{ \overline{ \boxed{ \purple{ \bf{ \left(1 +  \dfrac{q}{5}  \right) \left( 1 + \frac{ {q}^{2} }{25}  -  \frac{q}{5}  \right)}}}}}


Anonymous: Perfect :P
Similar questions