Math, asked by anjelshivani2008, 4 months ago

factorise the following:
a. \:  {z}^{2}  - 81
b. \:  {x}^{2} - 4x + 4

Answers

Answered by Anonymous
10

Answer:

z²-81= z²-9²

( z-9)(z+9)

x²-4x+4= (x-2)²

Hope it helps

Answered by MrHyper
14

\Huge{\textbf{\textsf{{\color{navy}{an}}{\purple{sw}}{\pink{er}}{\color{pink}{:}}}}}

 \bf \large \underline{To \: factorise} : \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf \color{red} a. \:  \:  \:  \:   {z}^{2}  - 81 \:  \:  \:  \:  \:  \:  \:  \\  \sf \color{red} b. \:  \:  \:  \:  {x}^{2}  - 4x + 4 \\  \\  \bf a. \:  \:  \:  \:  \underline{ {z}^{2}  - 81} :   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\  \sf \color{red} Identity:  \: a^{2} -  b ^{2} = (a + b)(a - b)  \\  \sf \implies \color{red}  {z}^{2}  - 81 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \implies  \color{red}  \underline{ \underline{(z + 9)(z - 9)}} \\  \\  \\  \bf b. \:  \:  \:  \: \underline{ {x}^{2}  - 4x + 4} :  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \sf \color{red} Identity :  \:  {a}^{2}  - 2ab +  {b}^{2}  = (a - b {)}^{2}  \\  \sf \implies \color{red}  {x}^{2}  - 4x + 4  \:  \:  \: \\  \sf \implies \color{red}  \underline{ \underline{(x - 2 {)}^{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions