Math, asked by AnanyaBaalveer, 1 day ago

Factorise the following
 \begin{gathered}  \sf{ {x}^{16}  -  {y}^{16}  +  {x}^{8}  +  {y}^{8} }\end{gathered}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {x}^{16} -  {y}^{16} +  {x}^{8} +  {y}^{8}  \\

can be rewritten as

\rm \:  =  \: ( {x}^{16} -  {y}^{16} )+({x}^{8} +  {y}^{8})  \\

\rm \:  =  \: \bigg[{( {x}^{8} )}^{2} -  {( {y}^{8} )}^{2}\bigg] + ( {x}^{8} +  {y}^{8}) \\

We know,

\boxed{ \rm{ \: {a}^{2} -  {b}^{2} = (a - b)(a + b) \: }} \\

So, using this identity, we get

\rm \:  =  \: ( {x}^{8} +  {y}^{8})( {x}^{8} -  {y}^{8}) + ( {x}^{8} +  {y}^{8}) \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[ {x}^{8} -  {y}^{8} + 1\bigg] \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[ {( {x}^{4} )}^{2} -  {( {y}^{4} )}^{2} + 1\bigg] \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[( {x}^{4} +  {y}^{4})( {x}^{4} -  {y}^{4}) + 1\bigg] \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[( {x}^{4} +  {y}^{4})( {( {x}^{2})}^{2} -  {( {y}^{2})}^{2}) + 1\bigg] \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[( {x}^{4} +  {y}^{4})( {x}^{2} +  {y}^{2})( {x}^{2} -  {y}^{2})+ 1\bigg] \\

\rm \:  =  \: ( {x}^{8} +  {y}^{8})\bigg[( {x}^{4} +  {y}^{4})( {x}^{2} +  {y}^{2})(x + y)(x - y)+ 1\bigg] \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions