Math, asked by AnanyaBaalveer, 20 hours ago

Factorise the following
\large \red{\underbrace{\bf{ \pink{ {a}^{4} -  ({a}^{2}   - 5p^{2})^{2} } }}}

Answers

Answered by user0888
31

\rm a^{4}-(a^{2}-5p^{2})^{2}

\;

\rm=(a^{2})^{2}-(a^{2}-5p^{2})^{2}

\;

\boxed{\rm A^{2}-B^{2}=(A+B)(A-B)}

\rm=(a^{2}+a^{2}-5p^{2})(a^{2}-a^{2}+5p^{2})

\;

\rm=5p^{2}(2a^{2}-5p^{2})

\;

\rm\therefore a^{4}-(a^{2}-5p^{2})^{2}=5p^{2}(2a^{2}-5p^{2})

\;

\Large\bigstar\textrm{Note}

In your previous question, check if the polynomial is correct.

Another answer has a mistake. I'm telling it for you. See the box carefully.

\sf2x^{3}-4x^{2}+3x-6-2xy+y

\sf=(2x^{3}-4x^{2})+(3x-6)-(\boxed{\sf2xy-y})

\sf=(2x^{3}-4x^{2})+(3x-6)-\boxed{\sf2y(x-2)}

\;

The boxed term becomes,

\sf 2y(x-2)=2xy-4y

\;

\sf 2xy-y and \sf 2xy-4y are different.

Answered by talpadadilip417
31

 \rule{300pt}{0.1pt}

\rm a^{4}-(a^{2}-5p^{2})^{2}

\rm=(a^{2})^{2}-(a^{2}-5p^{2})^{2}

\rm=(a^{2}+a^{2}-5p^{2})(a^{2}-a^{2}+5p^{2})</p><p>\;

\rm=5p^{2}(2a^{2}-5p^{2})=5p

\rm\therefore a^{4}-(a^{2}-5p^{2})^{2}=5p^{2}(2a^2 - 5 {p}^{2} )

Similar questions