Math, asked by nivedithakb916, 1 month ago

factorise the following using suitable identities 9x^2+4y^2+25z^2+24xy-20yz-30zx​

Answers

Answered by Anonymous
3

\huge{❥}\:{\mathtt{{\purple{\boxed{\tt{\pink{\red{A}\pink{n}\orange{s}\green{w}\blue{e}\purple{r᭄}}}}}}}}❥

_______________________________________

 {9x}^{2}  - 24xy +  {16y}^{2}  \\  \\ ( {3x)}^{2}  - 2 \times 3x \times ( - 4y) +({4y})^{2}

This is in the form of (a - b)²

 {a}^{2}  - 2ab +  {b}^{2}  = (a  -  b)^{2}  \\ (3x - 4y)(3x - 4y) \\(3x - 4y)^{2}

(3x-4y)(3x-4y) This is the irreducable form.

_______________________________________

hope it helps you

have a great day ahead

Answered by kamalhajare543
2

Answer:

______________________________________

 \sf \: {9x}^{2} - 24xy + {16y}^{2}

 \sf  \red{( {3x)}^{2}} - 2 \times 3x \times ( - 4y) + \pink{({4y})^{2}}

  \sf \: This \:  is  \: in \:  the  \: form \:  of \pink{(a - b)²}

 \sf{a}^{2} - 2ab + {b}^{2}

 \sf =(a - b)^{2} (3x - 4y)(3x - 4y)(3x - 4y)^{2}

 \sf \pink{(3x-4y)(3x-4y)} This \:  is  \: the \:   \red{ irreducable \:  form.}

(3x-4y) (3x-4y) This is the irreducible form.

Similar questions