Math, asked by dy546756, 11 months ago

factorise the following x square+6squre -16 by factorization method​

Answers

Answered by Anonymous
21

CORRECt QUESTIOn

x² + 6x - 16

Factories it

SOLUTIOn

→ x² + 6x - 16

Solve it by splitting middle term

→ x² + 8x - 2x - 16

→ x(x + 8) - 2(x + 8)

→ (x + 8)(x - 2)

SOMe IDENTITIEs

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
Answered by amitkumar44481
6

AnsWer :

x = 2 and - 8.

Solution :

We have,

\rule{90}3

Let Apply factorization method.

=> x² + 6x - 16

=> x² + 8x - 2x - 16.

=> x( x + 8 ) - 2 ( x + 8 )

=> ( x - 2 ) ( x + 8 )

\rule{90}3

Let Solve my Other method ( Quadratic Formula )

 \tt \dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Where as,

  • a = 1.
  • b = 6.
  • c = - 16.

 \tt : \implies x =  \dfrac{ - 6 \pm \sqrt{ {(6)}^{2}   - 4 \times 1 \times  - 16} }{2}

 \tt:\implies x =  \dfrac{ - 6 \pm \sqrt{36 + 64} }{2}

 \tt :\implies x =  \dfrac{ - 6 \pm \sqrt{100} }{2}

\tt: \implies x =  \dfrac{ - 6 \pm 10}{2}

Either,

\tt :\implies x =  \dfrac{ - 6 + 10 }{2}

\tt: \implies x =  \dfrac{ 4 }{2}

\tt :\implies x = 2 .

Or,

\tt: \implies x =  \dfrac{ - 6  - 10 }{2}

\tt :\implies x =  \dfrac{ - 16  }{2}

\tt: \implies x =   - 8.

Therefore, the value of x is 2 and - 8.

Similar questions