factorise the following
(x²-3x)² – 5( x² – 3x) – 50
Answers
Answered by
0
Step-by-step explanation:
first let's a= x²-3x
then ,
a²-5a-50
= a²-10a+5a-50
= a(a-10) +5(a-10)
= (a+5)(a-10)
so
after putting value of a in solution
the factrization= (x²-3x+5)(x²-3x+3)
Answered by
14
(x²-3x)² – 5( x² – 3x) – 50
⇒ Here, let (x² -3x) = y.
= (x²-3x)² – 5( x² – 3x) – 50
= y² - 5y - 50 ㅤ...[∵x²-3x = y]
= y² - (10-5)y - 50
= y² -10y + 5y -50
= y ( y-10 ) + 5 ( y-10 )
= (y-10) (y+5)
So, y = 10 or y = -5
Now,
⇒ When y = 10,
x² - 3x = 10
x² - 3x -10 = 0
Using quadratic formula,
x = -b ± √(b²-4ac) / 2a
x = 3 ± √(-3)² - 4(1)(-10) / 2(1)
x = 3 ± √(9+40) /2
x = 3 ± √(49)/2
x = 3 ± 7 /2
⇒ When y = -5,
x² - 3x = -5
x² - 3x +5 = 0
Using quadratic formula,
x = -b ± √(b²-4ac) / 2a
x = 3 ± √[(-3)² - 4(1)(5)] / 2(1)
x = 3 ± √(9-20) /2
x = 3 ± √(-11) /2
amansharma264:
Good
Similar questions