Math, asked by vasidoct123, 5 months ago

Factorise the following:
x²-(x-y)⁴​

Answers

Answered by llNidhill
6

Solution↷

 {x}^{2}  - (x - y) {}^{4}  \\  = [ {x}^{2}  + (x - y) {}^{2} ][ {x}^{2}  - (x - y) {}^{2} ] \\  = ( {x}^{2}  +  {x}^{2}  - 2xy +  {y}^{2})(x + (x - y) \\  = (2xy {}^{2}   - 2xy +  {y}^{2} )(2x - y)(x - x + y) \\  \green{ = y(2x - y)(2 {x}^{2}  - 2xy +  {y}^{2}) }

Answered by MrImpeccable
8

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Factorize:

  • x² - (x - y)⁴

Solution:

 x^2 - (x - y)^4 \\\\\implies x^2 - \left((x - y)^2\right)^2 \\\\\text{As, $a^2 - b^2$ = (a + b)(a -b)} \\\\\implies \left(x^2 + (x - y)^2\right) \times \left(x^2 - (x - y)^2\right) \\\\\implies \left(x^2 + (x^2 + y^2 - 2xy)\right) \times \left(x^2 - (x^2 + y^2 - 2xy) \right) \\\\\implies \left(x^2 + x^2 + y^2 - 2xy\right) \times \left(x^2 - x^2 - y^2 + 2xy\right) \\\\\implies \left(2x^2 + y^2 - 2xy\right) \times \left(2xy - y^2\right) \\\\\implies \left(2x^2 + y^2 - 2xy\right) \times \left(y(2x - y)\right) \\\\\bf{\implies y * (2x - y) * (2x^2 - 2xy + y^2)}

Formula Used:

  •  a^2 - b^2 = (a + b)(a -b)
  •  (a - b)^2 = a^2 + b^2 - 2ab

Hope it helps!!

Similar questions