Math, asked by cinirajeev622, 18 days ago

Factorise the following: x4 + 8x²y² + 16y4​

Answers

Answered by yadavshrutishruti
1

Answer:

STEP1:Equation at the end of step 1 ((x4)-((8•(x2))•(y2)))+24y4 STEP 2 :Equation at the end of step2: ((x4) - (23x2 • y2)) + 24y4 STEP3:Trying to factor a multi variable polynomial

 3.1    Factoring    x4 - 8x2y2 + 16y4 

Try to factor this multi-variable trinomial using trial and error 

 Found a factorization  :  (x2 - 4y2)•(x2 - 4y2)

Detecting a perfect square :

 3.2    x4  -8x2y2  +16y4  is a perfect square 

 It factors into  (x2-4y2)•(x2-4y2)

which is another way of writing  (x2-4y2)2

How to recognize a perfect square trinomial:  

 • It has three terms  

 • Two of its terms are perfect squares themselves  

 • The remaining term is twice the product of the square roots of the other two terms

Trying to factor as a Difference of Squares:

 3.3      Factoring:  x2-4y2 

Put the exponent aside, try to factor  x2-4y2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

         A2 - AB + BA - B2 =

         A2 - AB + AB - B2 =

         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 4 is the square of 2

Check :  x2  is the square of  x1 

Check :  y2  is the square of  y1 

Factorization is :       (x + 2y)  •  (x - 2y) 

Raise to the exponent which was put aside

Factorization becomes :   (x + 2y)2   •  (x - 2y)2  

Final result :

(x + 2y)2 • (x - 2y)2

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given algebraic expression is

\rm \:  {x}^{y} + 8 {x}^{2} {y}^{2} +  {16y}^{4} \\

can be rewritten as

\rm \:  =  \:  {( {x}^{2} )}^{2} +8{x}^{2} {y}^{2} +  {( {4y}^{2} )}^{2}  \\

\rm \:  =  \:  {( {x}^{2} )}^{2} +2 \times {x}^{2}  \times {4y}^{2} +  {( {4y}^{2} )}^{2}  \\

We know,

\boxed{ \rm{ \: {(a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2} \: }} \\

So, here

\rm \: a =  {x}^{2}  \\

and

\rm \: b =  {4y}^{2}  \\

So, using this identity, we get

\rm \:  =  \:  {( {x}^{2} +  {4y}^{2})}^{2}  \\

\rm \:  =  \: ( {x}^{2} +  {4y}^{2})( {x}^{2} +  {4y}^{2}) \\

Hence,

\rm\implies\:\boxed{\rm{{x}^{4}+{8x}^{2}{y}^{2}+{16y}^{4}=({x}^{2} +  {4y}^{2})( {x}^{2}+{4y}^{2})}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions