Math, asked by nikhillathwalpanipat, 9 months ago

Factorise the question 27y^3+125z^3

Attachments:

Answers

Answered by sjhsprachi8a09
1

Answer:

Factorization of 27 y^{3}+125 z^{3}\ \text{is}\ \bold{(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right)}y

3

+125z

3

is (3y+5z)(9y

2

+25z

2

−15yz)

Given:

27 y^{3}+125 z^{3}27y

3

+125z

3

To find:

Factorization of 27 y^{3}+125 z^{3}27y

3

+125z

3

Solution:

We have to factorize -

27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3} \rightarrow(1)27y

3

+125z

3

=(3y)

3

+(5z)

3

→(1) [ Since 27 = cube of 3, 125 = cube of 5]

We know that a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)a

3

+b

3

=(a+b)(a

2

+b

2

−ab)

Let, a = 3y, b= 5z

Hence,

(3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left[(3 y)^{2}+(5 z)^{2}-(3 y)(5 z)\right](3y)

3

+(5z)

3

=(3y+5z)[(3y)

2

+(5z)

2

−(3y)(5z)]

(3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right) \rightarrow(2)(3y)

3

+(5z)

3

=(3y+5z)(9y

2

+25z

2

−15yz)→(2)

From eq. (1) and (2) we get,

27 y^{3}+125 z^{3} \equiv(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right)27y

3

+125z

3

≡(3y+5z)(9y

2

+25z

2

−15yz)

Step-by-step explanation:

Mark me as branliest

Answered by Anonymous
1

Step-by-step explanation:

(3y)^3+(5z)^3

using formula

a^3+b^3=(a+b )(a^2+b^2-ab)

(3y+5z)(9y^2+25z^2-15yz)

Similar questions
Math, 9 months ago