Math, asked by Manogyajain, 4 months ago

Factorise :- the question below answer it step wise

Attachments:

Answers

Answered by Anonymous
42

 {x}^{4}  +  \frac{1}{ {x}^{4} }  + 1 \\  \\  \\  :  \longrightarrow \:  {( {x}^{2}) }^{2}  +  \frac{1}{ {( {x}^{2}) }^{2} }  + 2 {x}^{2}  \frac{1}{ {x}^{2} }   - 2+  1 \\  \\  \\  :  \longrightarrow { \bigg( {x}^{2} +  \frac{1}{ {x}^{2} }  \bigg) }^{2}   -  {\bigg(1 \bigg)}^{2}  \\  \\  \\  :  \longrightarrow \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 1 \bigg) \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  - 1 \bigg) \\  \\  \\  :  \longrightarrow\bigg( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \frac{1}{x}   - 1\bigg) \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} } +  2x \frac{1}{x}  + 1 \bigg) \\  \\  \\   :  \longrightarrow  \bigg \{{\bigg(x +  \frac{1}{x}  \bigg)}^{2}   - 1 \bigg \} \bigg \{ {\bigg(x +  \frac{1}{ x}  \bigg)}^{2}  + 1 \bigg \} \\  \\  \\   :  \longrightarrow \bigg(x +  \frac{1}{x}  + 1 \bigg) \bigg(x +  \frac{1}{x}  - 1 \bigg)\bigg \{ {\bigg(x +  \frac{1}{ x}  \bigg)}^{2}  + 1 \bigg \}

Similar questions