Math, asked by pkirit503, 8 months ago

factorise the sum:
144x^2 - 289y^2​

Answers

Answered by MяƖиνιѕιвʟє
45

Given :-

  • 144x² - 289y²

Solution :-

Apply identity : - = (a + b)(a - b)

→ 144x² - 289y²

→ (12x)² - (17y)²

→ (12x + 17y)(12x - 17y)

Extra Information :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • a³ + b³ = (a + b)(a² - ab + b²)
Answered by Bᴇʏᴏɴᴅᴇʀ
12

Answer:-

\bf{(12x + 17y)(12x - 17y)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

144x^2 - 289y^2

We know:-

\bf\boxed{(a^2 - b^2) = (a + b)(a - b)}

Using the above Identity:-

\longrightarrow{(12x)^2 - (17y)^2}

\longrightarrow{(12x + 17y)(12x - 17y)}

Hence, Factorized

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Some Useful Identities:-

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions