factorise using algebraic identities (1to9)
factorisation
Answers
Answer:
i have answered a few questions only
Solution :
4 (I) -
16a² - 25/9a²
=> [ 4a ]² - [ 5/3a ]²
=> [ 4a + 5/3a ][ 4a - 5/3a ]
=> [ 12a² + 5 ][ 12a² - 5] / 9a² .
4 (II) -
⅑ x²y² - 1/25 y²z²
=> [⅓ xy]² - [ ⅕ yz ]²
=> [ ⅓ xy + ⅕ yz ][ ⅓ xy - ⅕ yz ]
=> y² [ ⅓ x + ⅕ y][ ⅓ x - ⅕ y ]
4(III) -
x⁸ - 1
=> [ x⁴ ]² - 1
=> [ x⁴ + 1 ][ x² - 1]
=> [ x⁴ + 1][ x + 1][ x - 1]
_______________________________
Additional Information -
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
______________________________