Factorise using appropriate identities: (a2−6a+9)−25
Answers
Answer:
( a + 2 ) ( a - 8 )
Step-by-step explanation:
a^2 - 6a + 9
= a^2 - 3a - 3a + 9
= a ( a - 3 ) - 3 ( a - 3 )
= ( a - 3 ) ( a - 3 )
= ( a - 3 )^2
25 = 5^2
( a^2 - 6a + 9 ) - 25
= ( a - 3 )^2 - 5^2
a^2 - b^2 = ( a + b ) ( a - b ) { Identity / formula }
Here,
a = a - 3
b = 5
( a^2 - 6a + 9 ) - 25
= ( a - 3 )^2 - 5^2
= ( a - 3 + 5 ) ( a - 3 - 5 )
= ( a + 2 ) ( a - 8 )
Hence, factorized.
Answer:
=》 a =》 8 and (-2 ).
Step-by-step explanation:
Given :-
a^2 - 6a + 9 - 25 .
May be, a^2 - 6a - 16 = 0
Solution, 》a^2 - (8-2) a - 16 =0
》 a^2 -8a + 2a - 16 =0
》 a( a-8 ) + 2( a-8 ) = 0
》( a-8 ) ( a+2 ) = 0
then, a -8 =0 a +2 =0
》 a = 8 》 a = -2 .
Two value of "a " are -》8 and (-2 ).