Math, asked by gaurkrish2005krish, 10 months ago

Factorise using factorisation​

Attachments:

Answers

Answered by arunyadav1973
3

Answer:

 \frac{x - 3}{x - 2}  -  \frac{1 - x}{x}  =  \frac{17}{4} \\ cross \: multipliction \\  \frac{x(x - 3) - (x - 2)(1 - x)}{x(x - 2)} =  \frac{17}{4} \\  \frac{ {x}^{2} - 3x - (x -  {x}^{2}  - 2 + 2x) }{ {x}^{2} - 2x } = \frac{17}{4}  \\  \frac{ {x}^{2} - 3x - ( -  {x}^{2} + x - 2)  }{ {x}^{2} - 2x } =  \frac{17}{4}  \\  \frac{ {x}^{2} - 3x +  {x}^{2} - x + 2  }{ {x}^{2} - 2x } =  \frac{17}{4}  \\  \frac{2 {x}^{2} - 4x + 2 }{ {x}^{2} - 2x } =  \frac{17}{4} \\ 4(2 {x}^{2} - 4x + 2) = 17( {x}^{2} - 2x) \\ 8 {x}^{2} - 16x + 8 = 17 {x}^{2} - 34x \\ 17 {x}^{2} - 8 {x}^{2}  - 34x + 16x - 8 = 0 \\ 9 {x}^{2}  - 18x - 8 = 0 \\ by \: factorisation \\ 9 {x}^{2} - 12x - 6x   +  8 = 0 \\ 3x(3x - 4) - 2(3x  - 4) = 0 \\ 3x - 2 = 0 \:  \: or \:  \: 3x - 4 = 0 \\ 3x = 2 \:  \: or \:  \: 3x = 4 \\ x =  \frac{2}{3}  \:  \: or \:  \: x =  \frac{4}{3}

Plz mark as brainlist

Answered by Anonymous
20

Answer:

Step-by-step explanation:

Refer to the attachment above ♡

Mark it as brainliest please

Attachments:
Similar questions