factorise using identities 64x^2y^2-1
Answers
Answered by
1
Answer:
- Follow the following three identities to factor the algebraic expressions:
- (i) (a + b)2 = a2 + 2ab +b2,
- (ii) (a - b)2 = a2 - 2ab + b2 and
- (iii) a2 – b2 = (a + b) (a – b).
- Now using the above identities try to answer the following factors provided in the worksheet on factoring identities.
- 1. Factor the given expressions using identity:
- (i) m2 + 8m + 16
- (ii) 4x2 – 4x + 1
- (iii) x4 + 9y4 + 6x2y2
- (iv) (a4 - 8a2b2 + 16b4) - 18
- (v) 256 – x2 – 2xy – y2
- 2. Factorize the expressions:
- (i) 4x2 – 12xy + 9y2
- (ii) 36x2 – 84xy + 49y2
- (iii) 9a2 + 42ab + 49b2
- (iv) (3a – 5b)2 + 2 (3a – 5b ) (2b – a) + (2b - a)2
- (v) 36x2 + 36x + 8
- (vi) 4a4 + b4
- 3. Factor the identities:
- (i) 4x2 + 12xy + 9y2
- (ii) x2 + 22x + 121
- (iii) 9x2 - 24xy + 16y2
- (iv) 36x2 - 36x + 9
- (v) 16x4 - 72x2y2 + 81y4
- (vi) (a2 + c2 + 2ac) - b2
- 4. Factor completely using the formula:
- (i) 100 – [121p2 – 88pq + 16q2]
- (ii) 36 - a2 - b2 - 2ab
- (iii) 25a2 + 49b2 -70ab – 15a + 21b
- (iv) 4x2 - 4x – 3
- (v) 64 - a2 – b2 - 2ab
- (vi) 25x2 – (3y + 4z)2
Step-by-step explanation:
Similar questions