Math, asked by amreenkaur4238, 4 months ago

factorise using identities
plz answer this ​

Attachments:

Answers

Answered by DüllStâr
65

\huge{ \underline{\frak{\:\:\:\:\:~~~~~ \bigstar{}Solution\:\:\:\:\:~~~~~}}}

Equation 1:

 \boxed{ \bf{}(x +  {y)}^{2}  - (x -  {y)}^{2} }

 \\

Now Let's solve it!

 \\

 \dashrightarrow \sf{}(x +  {y)}^{2}  - (x -  {y)}^{2}

 \\

 \dashrightarrow \sf{}(x^{2}  +  {y}^{2}  + 2xy) - (x -  {y)}^{2}

 \\

 \dashrightarrow \sf{}(x^{2}  +  {y}^{2}  + 2xy) - ( {x}^{2} +  {y}^{2} - 2xy) \\

 \\

 \dashrightarrow \sf{}(x^{2}  +  {y}^{2}  + 2xy) -{x}^{2} -  {y}^{2} + 2xy \\

 \\

 \dashrightarrow \sf{}x^{2}  +  {y}^{2}  + 2xy -{x}^{2} -  {y}^{2} + 2xy \\

 \\

 \dashrightarrow \sf{}x^{2}+ 2xy -{x}^{2} -  {y}^{2}+  {y}^{2} + 2xy \\

 \\

 \dashrightarrow \sf{}x^{2}+ 2xy -{x}^{2}\cancel{  - {y}^{2}}+\cancel{  {y}^{2} }+ 2xy \\

 \\

 \dashrightarrow \sf{}x^{2}+ 2xy -{x}^{2}+ 2xy \\

 \\

 \dashrightarrow \sf{}x^{2}-{x}^{2}+ 2xy + 2xy \\

 \\

 \dashrightarrow \sf{}\cancel{x^{2}}\cancel{-{x}^{2}}+ 2xy + 2xy \\

 \\

 \dashrightarrow \sf{}2xy + 2xy \\

 \\

 \dashrightarrow \underline{\boxed{\sf{}4xy}}\\

 \\

Or:

 \\

 \dashrightarrow \sf{}(x +  {y)}^{2}  - (x -  {y)}^{2}

 \\

 \dashrightarrow \sf{}(x + y + x - y)(x + y - x + y)

 \\

 \dashrightarrow \sf{}(x\cancel{ + y }+ x \cancel{- y})(\cancel{x }+ y \cancel{- x} + y)

 \\

 \dashrightarrow \sf{}(x + x)(y + y)

 \\

 \dashrightarrow \sf{}2x \times 2y

 \\

 \dashrightarrow \underline{\boxed{\sf{}4xy}}\\

Equation 2:

 \boxed{ \bf{} \bigg( \frac{9}{25} {a}^{2} \bigg) -  \bigg( \frac{16}{64} {b}^{2}  \bigg) }

 \\

Now Let's solve it!

 \\

  \dashrightarrow\sf{} \bigg( \dfrac{9}{25} {a}^{2} \bigg) -  \bigg( \dfrac{16}{64} {b}^{2}  \bigg)

 \\

  \dashrightarrow\sf{} \bigg( \dfrac{3 \times 3}{5  \times 5} {a}^{2} \bigg) -  \bigg( \dfrac{4 \times 4}{8 \times 8} {b}^{2}  \bigg)

 \\

  \dashrightarrow\sf{} \bigg( \dfrac{ {3}^{2} }{ {5}^{2} } {a}^{2} \bigg) -  \bigg( \dfrac{ {4}^{2} }{ {8}^{2} } {b}^{2}  \bigg)

 \\

  \dashrightarrow\sf{} \bigg( \dfrac{ {3}}{ {5} } {a}\bigg)^{2} -  \bigg( \dfrac{ {4}}{ {8}} {b}  \bigg)^{2}

 \\

  \dashrightarrow \underline{ \boxed{\sf{} \bigg( \dfrac{ {3}}{ {5} } {a} +  \dfrac{4}{8}b \bigg)  \bigg( \dfrac{3}{5} a -  \dfrac{ {4}}{ {8}} {b}  \bigg)}}

know more:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

@DüllStâr

Attachments:
Similar questions