Math, asked by sgodaraa, 7 months ago

factorise using identity 2x^3+28x^2+98x​

Attachments:

Answers

Answered by xInvincible
2

Answer:

i)

2x(x + 7)(x + 7)

ii)

(a {x }^{2}  + b {y}^{2} )(a {x }^{2}  + b {y}^{2} )

Step-by-step explanation:

i)

2 {x}^{3}  + 28 {x}^{2}  + 98x \\  = )2x( {x}^{2}  + 14x + 49) \\  = )2x(( {x)}^{2}  + (2 \times 7 \times x) + ( {7)}^{2} ) \\  = )2x(x + 7 {)}^{2}  \\  = )2x (x + 7)(x + 7)

ii)

 {a}^{2}  {x}^{4}  + 2ab {x}^{2}  {y}^{2}  +  {b}^{2}  {y}^{4}  \\  = )((a {x}^{2}  {)}^{2}  + (2 \times a  {x}^{2}  + b {y}^{2} ) + (b {y}^{2}  {) }^{2}  \\  = )(a {x}^{2}  + b {y}^{2}  {)}^{2}  \\  = )(a {x}^{2}  + b {y} ^{2}  )(a {x}^{2}  + b {y} ^{2}  )

Hope it helped

Answered by roshinisrees0501
0

Answer:

(i)2x^3+28x^2+98x=0

2x(x^2+14x+49)=0

Now this came as a^2+2ab+b^2

2x(x+7)(x+7)=0

(ii)By simply comparing we get (ax^2+by^2)^2=0

Step-by-step explanation:

Similar questions