Math, asked by shasiprbha92, 5 hours ago

factorise using identity 3x² + 6 + 3/x^2​

Answers

Answered by ProximaNova
77

\rm :\longmapsto 3x^2 + 6 + \dfrac{3}{x^2}

\rm :\longmapsto 3\left(x^2 + 2 + \dfrac{1}{x^2}\right)

\rm :\longmapsto 3 \left[(x)^2 + 2\times x \times \dfrac{1}{x} + \left(\dfrac{1}{x}\right)^2\right]

\boxed{\boxed{\rm :\longmapsto 3\left(x+\dfrac{1}{x}\right)^2}}

Identities used:

\boxed{\rm :\longmapsto (a+b)^2 = a^2+b^2+2ab}

Answered by Anonymous
135

Step-by-step explanation:

Given

Factorise using identity

  • Equation☟︎︎︎
  • \tt\large\underline{3x² + 6 +  \frac{3}{x^{2} } }

To Find

Factorise Using Identifies.

Solution

\tt\large\underline{\longmapsto3x² + 6 +  \frac{3}{x^{2} } }

Multiplying the whole equation by x²

3x^2(x^2+1)+3(x^2+1)}

\large{✰} \bf \underline\color{pu}{\longmapsto(3x^2+3)(x^2+1)}

\begin{gathered}\:\:\:\:\:\:\:\:\tt\color{aqua}{●\mid} \underbrace{\color{red}{\longmapsto3x^4+3x^2+3x^2+3}}\color{blue}{\mid●}\\\end{gathered}●∣

Therefore,

\tt\large\underline\orange{\longmapsto'3x^4+6x^2+3'}

Identities Used For It-

\tt\large\underline{\longmapsto(a+b)^2 = a^2+b^2+2ab}

\tt\large\underline{\longmapsto(a+b)2=a2+b2+2ab}

Some Identifies

  • Identity I: (a + b)2 = a2 + 2ab + b2

  • Identity II: a2 – b2= (a + b)(a – b)
Similar questions