Math, asked by skeneennamariam, 1 month ago

Factorise using identity 9a²+4b²+c²-12ab-4bc+6ac​

Answers

Answered by Anonymous
3

Answer:

9a

9a 2

9a 2 +4b

9a 2 +4b 2

9a 2 +4b 2 +16c

9a 2 +4b 2 +16c 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xz

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2 +(−4c)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2 +(−4c) 2

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)= (3a+2b−4c)

9a 2 +4b 2 +16c 2 +2ab−16bc−24ca= (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)Suitable identities is (x+y+z) 3 =x 3 +y 3 +z 3 +2xy+2yz+2xzTherefore, (3a) 2 +(2b) 2 +(−4c) 2 +2(3a)(2b)+2(2b)(−4c)+2(−4c)(2a)= (3a+2b−4c) 2

hope it's helpful

❤️badmash ladka❤️

Answered by nitvaniya123
2

Answer:

(3a-2b+c)²

Step-by-step explanation:

we know that,

a²+b²+c²+2ab+2bc+2ac =(a+b+c)².

9a²+4b²+c²-12ab-4bc+6ac

=(3a)²+(-2b)²+(1c)²+2(-6)ab+2(-2)bc+2(3)ac

=(3a-2b+1c)²

Similar questions