Math, asked by felzzhmar, 4 days ago

Factorise using middle term splitting

Its a little hard

5(x-y)^2-38(x-y)+21

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {5(x - y)}^{2} - 38(x - y) + 21

Let assume that

\rm :\longmapsto\:\boxed{ \tt{ \: x - y = z \: }} -  -  -  - (1)

So, above expression can be rewritten as

\rm \:  =  \: {5z}^{2}  - 38z + 21

Using splitting of middle terms, we get

\rm \:  =  \: {5z}^{2}  - 35z - 3z + 21

\rm \:  =  \:5z(z - 7) - 3(z - 7)

\rm \:  =  \:(z - 7)(5z - 3)

On substituting the value of z, we get

\rm \:  =  \:(x - y - 7)[5(x - y)- 3]

\rm \:  =  \:(x - y - 7)[5x - 5y- 3]

Hence,

 \green{\bf :\longmapsto\: {5(x - y)}^{2} - 38(x - y) + 21}

 \red{\rm \:  =  \:(x - y - 7)(5x - 5y- 3)}

Basic Concept Used :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c, we have to find numbers p and q such that p + q = b and pq = ac.

After finding p and q, we split the middle term in the given quadratic expression as px + qx and get required factors by grouping the terms.

Explore more :-

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {5(x - y)}^{2} - 38(x - y) + 21

Let assume that

\rm :\longmapsto\:\boxed{ \tt{ \: x - y = z \: }} -  -  -  - (1)

So, above expression can be rewritten as

\rm \:  =  \: {5z}^{2}  - 38z + 21

Using splitting of middle terms, we get

\rm \:  =  \: {5z}^{2}  - 35z - 3z + 21

\rm \:  =  \:5z(z - 7) - 3(z - 7)

\rm \:  =  \:(z - 7)(5z - 3)

On substituting the value of z, we get

\rm \:  =  \:(x - y - 7)[5(x - y)- 3]

\rm \:  =  \:(x - y - 7)[5x - 5y- 3]

Hence,

 \green{\bf :\longmapsto\: {5(x - y)}^{2} - 38(x - y) + 21}

 \red{\rm \:  =  \:(x - y - 7)(5x - 5y- 3)}

❥ Basic Concept Used :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c, we have to find numbers p and q such that p + q = b and pq = ac.

After finding p and q, we split the middle term in the given quadratic expression as px + qx and get required factors by grouping the terms.

❥ Explore more :-

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions