Math, asked by yangchendema, 1 month ago

Factorise using suitable identities
a {}^{2}  + \frac{1}{a {}^{2} }  + 2

Answers

Answered by riley06
0

Answer:

in picture

Step-by-step explanation:

pls refer to image hope it helps

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

 \red{\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2}

can be rewritten as

\rm \:  =  \:  {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2 \times 1

\rm \:  =  \:  {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2 \times a \times \dfrac{1}{a}

\rm \:  =  \:  {(a)}^{2}  +  {\bigg[\dfrac{1}{a} \bigg]}^{2}  + 2 \times a \times \dfrac{1}{a}

We know,

\red{ \boxed{ \sf{ \: {x}^{2} +  {y}^{2}  + 2xy =  {(x + y)}^{2}}}}

Here,

 \red{\rm :\longmapsto\:x = a}

and

 \red{\rm :\longmapsto\:y = \dfrac{1}{a} }

So, using this identity, it can be rewritten as

\rm \:  =  \:  {\bigg[a + \dfrac{1}{a} \bigg]}^{2}

\rm \:  =  \: \bigg[a + \dfrac{1}{a} \bigg] \times \bigg[1 + \dfrac{1}{a} \bigg]

Hence,

\rm :\longmapsto\:\green{ \boxed{ \sf{ \: {a}^{2} +  \frac{1}{ {a}^{2} } + 2 =   \bigg[a + \dfrac{1}{a} \bigg] \times \bigg[1 + \dfrac{1}{a} \bigg]}}}

Alternative Method

Given expression is

 \red{\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2}

\rm \:  =  \:  {a}^{2} + \dfrac{1}{ {a}^{2} }  + 2 \times1

\rm \:  =  \:  {a}^{2} + \dfrac{1}{ {a}^{2} }  + \dfrac{2a}{a}

\rm \:  =  \:  {a}^{2} + \dfrac{1}{ {a}^{2} }  + \dfrac{a}{a}  + \dfrac{a}{a}

\rm \:  =  \: \bigg( {a}^{2}  + \dfrac{a}{a} \bigg)  + \bigg(\dfrac{1}{ {a}^{2} }  + \dfrac{a}{a}  \bigg)

\rm \:  =  \: a\bigg(a + \dfrac{1}{a}  \bigg)  + \dfrac{1}{a} \bigg(\dfrac{1}{a}  + a\bigg)

\rm \:  =  \: a\bigg(a + \dfrac{1}{a}  \bigg)  + \dfrac{1}{a} \bigg(a + \dfrac{1}{a}  \bigg)

\rm \:  =  \: \bigg(a + \dfrac{1}{a}  \bigg)  \times  \bigg(a + \dfrac{1}{a}  \bigg)

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \: {a}^{2} +  \frac{1}{ {a}^{2} } + 2 =   \bigg[a + \dfrac{1}{a} \bigg] \times \bigg[1 + \dfrac{1}{a} \bigg]}}}

Similar questions