Math, asked by yangchendema, 1 month ago

factorise using suitable identities
( \frac{a}{b} ) {}^{3}  +(  \frac{b}{c} ) {}^{3}  + ( \frac{c}{a} ) {}^{3}  - 3

Answers

Answered by 2dots
1

Answer:

(\frac{a}{b} +\frac{b}{c} + \frac{c}{a}) (\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} -  \frac{a}{c} -  \frac{b}{a} -  \frac{c}{b})

Step-by-step explanation:

Using Identity x³ + y³ + z³ - 3xyz = (x+y+z)(x²+y²+z²-xy-yz-xz)

We can use this Identity as multiplication of first 3 terms cancels each other i.e. = 1

(\frac{a}{b})^3 + (\frac{b}{c})^3 + (\frac{c}{a})^3   -3\\= (\frac{a}{b} +\frac{b}{c} + \frac{c}{a}) (\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} -  \frac{a.b}{b.c} -  \frac{b.c}{c.a} -  \frac{c.a}{a.b})\\= (\frac{a}{b} +\frac{b}{c} + \frac{c}{a}) (\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} -  \frac{a}{c} -  \frac{b}{a} -  \frac{c}{b})

Similar questions