Math, asked by Pakhisaxena10, 3 months ago

factorise using suitable identity:- (13a - 7b - c)^2​

Answers

Answered by Anonymous
1

Answer:

Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...

Step-by-step explanation:

(a-b-c)² = a² + b² + c² - 2ab - 2bc - 2ca

Here a = 13a , b = 7b , c = c

Putting values in formula

(13a)² + (7b)² + c² -2(13a)(7b) - 2(7b)(c) - 2(c)(13a)

169a² + 49b² +c² -182ab - 14bc - 26ca

Answered by Anonymous
9

Given :                                                                                                                    We have to solve by using suitable Identity for (13a-7b-c)^{2}                   Identity to know :  (a-b-c)^{2} = a^{2} +b^{2} +c^{2} -2ab +2bc-2ca    

                            lets do!!                                                                                 Bycomparsion :                                                                                                  A = 13a

B = 7b

C =   c     

plugging the values :

(13a)^{2} +(7b)^{2} +(c)^{2} - 2(13a)(7b)+2(7b)(c) - 2(c)(13a)      

Simplifing the value

169a^{2} +49b^{2}+c^{2} -182ab +14bc -26ac

Know more :-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions