Math, asked by satyam6825, 11 months ago

Factorise x^2 +1/x^2-3​

Answers

Answered by Anonymous
67

Question :

Factorise :

 \sf x {}^{2} +  \dfrac{1}{x {}^{2} }  - 3

Formula's used:

Algebra Identities

 \sf(x + y)(x - y) = x {}^{2}  - y {}^{2}

 \sf(x - y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

 \sf(x + y) {}^{2}  = x {}^{2}  + y {}^{2}  + 2xy

Solution :

We have to factorise

 \sf x {}^{2}  +  \dfrac{1}{x {}^{2} } - 3

 \sf = x {}^{2}  +  \dfrac{1}{x {}^{2} }  - 2 - 1

 \sf  = x {}^{2}  +  \dfrac{1}{x {}^{2} }  - 2 \times x \times  \dfrac{1}{x}  - 1

Now use formula (a-b)²=a²+b²-2ab

 \sf = (x -  \dfrac{1}{x}) {}^{2}  - 1

Now use formula a²-b² = (a+b)(a-b)

 \sf = (x -  \dfrac{1}{x}  - 1)(x -  \dfrac{1}{x}  + 1)

It is the required solution!

Note :

Graph of  \sf x {}^{2}  +  \dfrac{1}{x {}^{2} }  - 3 in the attachment

____________________________

More About Factorization:

a factorization method called "grouping."

Attachments:
Answered by Anonymous
10

________________________

\huge\tt{GIVEN:}

  • x² +1/x²-³

_________________________

\huge\tt{FACTORISING:}

↪x² + 1/x² - 3

↪x²+1/x² - 2 - 1

↪x² + 1/x² - 2 * x * 1/x - 1

↪(x - 1/x)² - 1

↪(x - 1/x - 1) (x - 1/x + 1)

_________________________

Similar questions