Math, asked by harsh266884, 4 months ago

Factorise (x^2 + 1/x^2) -4(x + 1/x) + 6​

Answers

Answered by Anonymous
4

Question:

Factorise  \big(x^2 + \frac{1}{x^2}\big) - 4 \big(x + \frac{1}{x}\big) + 6

Solution:

\sf \bigg(x^2 + \frac{1}{x^2}\bigg) - 4 \bigg(x + \frac{1}{x}\bigg) + 6 \\\\\sf  \mapsto\bigg(x^2 + \frac{1}{x^2}\bigg)  + 6- 4 \bigg(x + \frac{1}{x}\bigg)  \\  \\ \sf   \mapsto\bigg(x^2 + \frac{1}{x^2}  + 2 \times  \frac{1}{x} \times x \bigg) + 4- 4 \bigg(x + \frac{1}{x}\bigg) \\  \\  \sf  \mapsto \bigg(x^2 + \frac{1}{x^2}  + 2 \times  \frac{1}{x} \times x \bigg) +   {2}^{2}- 4 \bigg(x + \frac{1}{x}\bigg)   \\  \\  \sf \mapsto \bigg(x +  \frac{1}{x} \bigg)^{2} +   {2}^{2}- 4 \bigg(x + \frac{1}{x}\bigg)  \\  \\  \sf \mapsto\bigg(x +  \frac{1}{x }  + 2\bigg)\bigg(x +  \frac{1}{x }  + 2\bigg)- 4 \bigg(x + \frac{1}{x}\bigg)

Similar questions