Math, asked by niniagarwal6, 9 months ago

Factorise: x^2 + 1/x^2 - 6

Answers

Answered by joshiharshin
0

Answer:

Your answer is here.

Please follow me. .......

Please mark me as a brainliest answer..........

Attachments:
Answered by Anonymous
189

Answer:

\underline{ \bf{\dag}\:\:\large{\textit{Method 1 :}}}

:\implies\tt x^2+\dfrac{1}{x^2}-6\\\\\\:\implies\tt x^2 + \dfrac{1}{x^2} + 2 - 8\\\\\\:\implies\tt (x)^2 + \bigg( \dfrac{1}{x} \bigg)^2 + \bigg(2 \times x \times \dfrac{1}{x} \bigg) - (2 \sqrt{2})^2\\\\\\:\implies\tt \bigg(x + \dfrac{1}{x}\bigg)^2 -(2 \sqrt{2})^2\\\\\\:\implies\underline{\boxed{\tt \bigg(x + \dfrac{1}{x} + 2 \sqrt{2} \bigg) \bigg(x +  \dfrac{1}{x} -2 \sqrt{2} \bigg)}}

\rule{200}{1}

\underline{ \bf{\dag}\:\:\large{\textit{Method 2 :}}}

:\implies\tt x^2+\dfrac{1}{x^2}-6\\\\\\:\implies\tt x^2 + \dfrac{1}{x^2} - 2 - 4\\\\\\:\implies\tt (x)^2 + \bigg( \dfrac{1}{x} \bigg)^2 - \bigg(2 \times x \times \dfrac{1}{x} \bigg) - (2)^2\\\\\\:\implies\tt \bigg(x - \dfrac{1}{x}\bigg)^2 -(2)^2\\\\\\:\implies\underline{\boxed{\tt \bigg(x - \dfrac{1}{x} + 2\bigg) \bigg(x  - \dfrac{1}{x} -2\bigg)}}

Similar questions