Math, asked by mishrabooby422, 10 months ago

Factorise x^2 +2√3x - 24

Answers

Answered by harmansingh8080
0

Step-by-step explanation:

x² +2/3-2+ x² +4/3-2/3x-2)x x(x+4/3)-2/3(x+4/3)x(x-2/3) (x+4/3)

Answered by Anonymous
89

Given :-

  • x²+2√3x-24

To find :-

  • Solve the expression ?

Solution:-

  • Given polynomial is x²+2√3x-24

\qquad☀️ Here, 24 can be written as :-

\qquad\leadsto\quad \pmb  {\mathfrak{24 = 2×2×2×3}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{24 = 2×2×2×√3×√3}}\\

\blue{\qquad\leadsto\quad \pmb  {\mathfrak{24 = 4√3×2√3}}}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{x²+2√3x-24}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{x²+2√3x-(4√3×2√3)}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ x²+4√3x-2√3x-(4√3×2√3)}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ x(x+4√3) -2√3(x+4√3)}}\\

\blue{\qquad\leadsto\quad \pmb  {\mathfrak{ (x+4√3)(x-2√3)}}}\\\\

\qquad\small\underline{\pmb{\sf \:According \: to \: the \: question :-}}

\qquad☀️ To get zeroes we write the polynomial is equal to zero.

\qquad\leadsto\quad \pmb  {\mathfrak{(x+4√3)(x-2√3)=0}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ x+4√3 = 0 \;or \;x-2√3 = 0}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{ x = -4√3 \;or \;x = 2√3}}}\\\\

  • Zeroes of the given polynomial are -4√3 and 2√3.

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions