factorise : x^2 - ( √2 + √5 ) x + √10
Answers
Answered by
0
x^2-(√2+√5)x+√10
a=1 b=-(√2+√5) c=√10
roots= [-b+-√b^2-4ac]/2a
={(√2+√5)+-√[(√2+√5)^2-4*1√10]}/2
={(√2+√5)+-√[(2+2√2*√5+5)-4√10]}/2
={(√2+√5)+-√[7+2√2*√5-4√10]}/2
=[(√2+√5)+-√(7+2√10-4√10)]/2
=[(√2+√5)+-√(7-2√10)]/2
roots are [(√2+√5)+√(7-2√10)]/2
and
[(√2+√5)-√(7-2√10)]/2
Answered by
2
Answer:
(x - √2) (x - √5)
Step-by-step explanation:
x² - (√2 + √5)x + √10
=> x² - (√2x + √5x) + √10
=> x² - √2x - √5x + √10
=> x(x - √2) - √5(x - √2)
=> (x - √2) (x - √5)
Hence x² - (√2 + √5)x + √10 = (x - √2) (x - √5)
hope it helps.
Similar questions