Math, asked by shaikateequrrahman00, 11 months ago

Factorise : x 2 + 4y 2 + 16z 2 +
4xy + 16yz +8zx

Answers

Answered by mehakshj2005
4

Answer:

here's ur answer

(x^2 +4y^2 + 16z^2)^2

(x^2+4y^2+16z^2)(x^2+4y^2+16z^2)

Step-by-step explanation:

Answered by pulakmath007
7

 \sf  {x}^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 4xy + 16yz + 8zx = (x + 2y + 4z)(x + 2y + 4z)

Given :

The expression

 \sf  {x}^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 4xy + 16yz + 8zx

To find :

To factorise the expression

Formula :

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

 \sf  {x}^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 4xy + 16yz + 8zx

Step 2 of 2 :

Factorise the expression

We use the formula ,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Thus we get

 \sf  {x}^{2}  + 4 {y}^{2}  + 16 {z}^{2}  + 4xy + 16yz + 8zx

 \sf   = {(x)}^{2}  +  {(2y)}^{2}  +  {(4z)}^{2}  + 2.x.2y + 2.2y.4z + 2.x.4z

 \sf   =   {(x + 2y + 4z)}^{2}

 \sf   =   (x + 2y + 4z)(x + 2y + 4z)

Similar questions