Math, asked by kdeopriyanshi2006, 11 months ago

Factorise: -x^2+55x-750

Answers

Answered by Aloi99
6

Given:-

→-x²+55x-750=p(x)

→p(x)=0

→-x²+55x-750=0

\rule{200}{1}

To Find:-

→The Value of x?

\rule{200}{1}

AnsWer:-

→-x²+55x-750=0

★Using Discriminant Formula, as Spiliting the middle term would be too lenghty★

→d=b²-4ac

•a=-1,b=55,c=-750

♦Putting the Values♦

→d=(55)²-4×-1×(-750)

→d=3025-3000

→d=3025

→√d=±√3025

→√d=±55

\rule{200}{1}

Taking x(+)= \frac{-b+ \sqrt{d}}{2a}

→x= \frac{-55+55}{2 \times 1}

→x= \frac{0}{2}

→x=0

\rule{200}{1}

Taking x(-)= \frac{-b- \sqrt{d}}{2a}

→x= \frac{-55-55}{2×1}

→x= \frac{\cancel{-110}}{\cancel{2}}

→x=-55

\rule{200}{2}

Answered by Saby123
6

 \tt{\huge{\orange {Question - }}}

Factorise: -x^2+55x-750

SOLUTION :

 \sf{  \leadsto{ -  {x}^{2}  + 55x - 750}}

 \sf{  \leadsto{ -  {x}^{2}  - 30x - 25x + 750 \: }}

 \sf{  \leadsto{ \:  - x(x + 30) - 25(x + 30) \: }}

 \sf{  \leadsto{( - x - 25)(x + 30)}}

 \sf{  \leadsto{ - (x + 30)(x + 25) \: }}

Similar questions