Math, asked by Ghostjiiddhd, 10 months ago

Factorise:x^2-x+1/24

Answers

Answered by MaheswariS
3

\textbf{Given:}

x^2-x+\frac{1}{24}

\textbf{To find:}

\text{Factors of $x^2-x+\frac{1}{24}$}

\textbf{Solution:}

\text{Consider,}

x^2-x+\frac{1}{24}

\text{First we make part of the polynomial as a perfect square}

=(x^2-x+\frac{1}{4})-\frac{1}{4}+\frac{1}{24}

=(x-\frac{1}{2})^2-\frac{5}{24}

=(x-\frac{1}{2})^2-(\frac{\sqrt{5}}{\sqrt{24}})^2

\text{Using the identity,}\boxed{\bf\,a^2-b^2=(a+b)(a-b)}

\text{we get}

=(x-\frac{1}{2}+\frac{\sqrt{5}}{\sqrt{24}})(x-\frac{1}{2}-\frac{\sqrt{5}}{\sqrt{24}})

=(x-\frac{1}{2}+\frac{\sqrt{5}}{2\sqrt{6}})(x-\frac{1}{2}-\frac{\sqrt{5}}{2\sqrt{6}})

\therefore\textbf{The factors of $\bf\,x^2-x+\frac{1}{24}$ are $\bf\,(x-\frac{1}{2}+\frac{\sqrt{5}}{2\sqrt{6}})(x-\frac{1}{2}-\frac{\sqrt{5}}{2\sqrt{6}})$}

Find more:

1.X2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404#

2.Factorise x^4-(x-z)^4​

https://brainly.in/question/14993176

3.a^4+b^4-7a^2b^2 factorise​

https://brainly.in/question/8387647

Answered by rowboatontario
0

The roots of the equation are (x=\frac{1-\sqrt{\frac{5}{6} } }{2} , x=\frac{1+\sqrt{\frac{5}{6} } }{2} ).

Step-by-step explanation:

We are given with the following equation to factorize;

x^{2} -x+(\frac{1}{24})

To factorize the above equation, we will use the D=b^{2} -4ac method;

In the above equation; a = 1 , b = (-1) and c = \frac{1}{24}.

D=(-1)^{2} -4\times (1)\times (\frac{1}{24})

     =  1-\frac{1}{6}

     =  \frac{6-1}{6}=\frac{5}{6}

Now, the roots of the equation are given by;

x=\frac{-b-\sqrt{D} }{2a}            and        x=\frac{-b+\sqrt{D} }{2a}  

x=\frac{-(-1)-\sqrt{\frac{5}{6} } }{2\times 1}       and        x=\frac{-(-1)+\sqrt{\frac{5}{6} } }{2\times 1}

x=\frac{1-\sqrt{\frac{5}{6} } }{2}             and        x=\frac{1+\sqrt{\frac{5}{6} } }{2}

Hence, the roots of the equation are (x=\frac{1-\sqrt{\frac{5}{6} } }{2} , x=\frac{1+\sqrt{\frac{5}{6} } }{2} ).

Similar questions