Math, asked by UnknownCrasher3515, 10 months ago

Factorise : x^2+x-1452 =0

Answers

Answered by luk3004
0

Trying to factor by splitting the middle term

1.1     Factoring  x2+x-1452  

The first term is,  x2  its coefficient is  1 .

The middle term is,  +x  its coefficient is  1 .

The last term, "the constant", is  -1452  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -1452 = -1452  

Step-2 : Find two factors of  -1452  whose sum equals the coefficient of the middle term, which is   1 .

     -1452    +    1    =    -1451  

     -726    +    2    =    -724  

     -484    +    3    =    -481  

     -363    +    4    =    -359  

     -242    +    6    =    -236  

     -132    +    11    =    -121  

For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Equation at the end of step  1  :

 x2 + x - 1452  = 0  

Step  2  :

Parabola, Finding the Vertex :

2.1      Find the Vertex of   y = x2+x-1452

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero).  

Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.  

Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.  

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -0.5000  

Plugging into the parabola formula  -0.5000  for  x  we can calculate the  y -coordinate :  

 y = 1.0 * -0.50 * -0.50 + 1.0 * -0.50 - 1452.0

or   y = -1452.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2+x-1452

Axis of Symmetry (dashed)  {x}={-0.50}  

Vertex at  {x,y} = {-0.50,-1452.25}  

x -Intercepts (Roots) :

Root 1 at  {x,y} = {-38.61, 0.00}  

Root 2 at  {x,y} = {37.61, 0.00}  

Solve Quadratic Equation by Completing The Square

2.2     Solving   x2+x-1452 = 0 by Completing The Square .

Add  1452  to both side of the equation :

  x2+x = 1452

Now the clever bit: Take the coefficient of  x , which is  1 , divide by two, giving  1/2 , and finally square it giving  1/4  

Add  1/4  to both sides of the equation :

 On the right hand side we have :

  1452  +  1/4    or,  (1452/1)+(1/4)  

 The common denominator of the two fractions is  4   Adding  (5808/4)+(1/4)  gives  5809/4  

 So adding to both sides we finally get :

  x2+x+(1/4) = 5809/4

Adding  1/4  has completed the left hand side into a perfect square :

  x2+x+(1/4)  =

  (x+(1/2)) • (x+(1/2))  =

 (x+(1/2))2

Things which are equal to the same thing are also equal to one another. Since

  x2+x+(1/4) = 5809/4 and

  x2+x+(1/4) = (x+(1/2))2

then, according to the law of transitivity,

  (x+(1/2))2 = 5809/4

We'll refer to this Equation as  Eq. #2.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x+(1/2))2   is

  (x+(1/2))2/2 =

 (x+(1/2))1 =

  x+(1/2)

Now, applying the Square Root Principle to  Eq. #2.2.1  we get:

  x+(1/2) = √ 5809/4

Subtract  1/2  from both sides to obtain:

  x = -1/2 + √ 5809/4

Since a square root has two values, one positive and the other negative

  x2 + x - 1452 = 0

  has two solutions:

 x = -1/2 + √ 5809/4

  or

 x = -1/2 - √ 5809/4

Note that  √ 5809/4 can be written as

 √ 5809  / √ 4   which is √ 5809  / 2

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     1

                     B   =    1

                     C   =  -1452

Accordingly,  B2  -  4AC   =

                    1 - (-5808) =

                    5809

Applying the quadratic formula :

              -1 ± √ 5809

  x  =    ——————

                     2

 √ 5809   , rounded to 4 decimal digits, is  76.2168

So now we are looking at:

          x  =  ( -1 ±  76.217 ) / 2

Two real solutions:

x =(-1+√5809)/2=37.608

or:

x =(-1-√5809)/2=-38.608

Two solutions were found :

x =(-1-√5809)/2=-38.608

x =(-1+√5809)/2=37.608

Similar questions