Math, asked by brainlystudent12365, 2 months ago

factorise x ^ 2 + x - 30 using the splitting the middle term method​

Answers

Answered by ItzAshi
53

Step-by-step explanation:

Question :-

Factorise x² + x - 30 using the splitting the middle term method.

Solution :-

{\bold{\sf{⟾  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x² \:  +  \: x  \: -  \: 30}}} \\

Splitting the middle term,

{\bold{\sf{⟾ \:  \:  \:  \:  \:  \:  \:  \:  \:  x² \:  +  \: 6x  \: -  \: 5x  \: -  \: 30}}} \\

{\bold{\sf{⟾ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x(x  \: +  \: 6) \:  - \:  5(x  \: + \:  6)}}} \\

{\bold{\sf{⟾  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (x \:  -  \: 5) (x  \: +  \: 6)}}} \\

Answered by llTheUnkownStarll
73

\large \fbox{Given Question:}

 \sf {{x}^{2}  + x - 30}

\large \fbox{Required Answer:}

 \sf \blue{ \implies {x}^{2}  + x - 30}

 \sf \blue{ \implies {x}^{2} + 6x - 5x - 30}

 \sf  \blue{ \implies{6x(x + 6) - 5(x + 6)}}

 \sf \blue{ \implies(x + 6)(6x - 5)}

 \boxed{ \sf \bold \blue{ (x + 6)(6x - 5)}} \purple\bigstar

 \sf \pink{Hence, it \:  is \:  factorized.}

Thank you!

@itzshivani

Similar questions