Factorise x 3 - 23x 2 + 142x - 120
Answers
Answered by
2
by method of substitution 1 satisfies the equation
hence divide eqn by (x-1)
we get quadratic equations
x^2-22x+120
solve this
factors are
(x-12)(x-10)(x-1)
hence divide eqn by (x-1)
we get quadratic equations
x^2-22x+120
solve this
factors are
(x-12)(x-10)(x-1)
Anonymous:
welcome follow me for more answers
Answered by
0
Answer:
We know that if the sum of the coefficients is equal to 0 then (x-1) is one of the factors of given polynomial.
x-1 = 0
x = 1
Put x=1,
(1)³-23(1)²+142(1)-120
→ 1-23+142-120
→ 120-120
→ 0
Therefore,(x-1) is a factor of the given polynomial.
Now the factors are (x-1) and (x²-22x+120) {see pic for knowing how (x²-22x+120) is a factor}
Now factorise x²-22x+120
x²-22x+120
→ x²-12x-10x+120
→ x(x-12)-10(x-12)
→ (x-12)(x-10)
Therefore, x²-22x+120 = (x-12)(x-10)
The factors of x³-23x²+142x-120 = (x-1)(x-12)(x-10)
Hope it helps....…
Similar questions