factorise x^3 -23x^2+142x-120
Answers
Answered by
2
x^{3}- x^{2} -22 x^{2} +22x+120x+120
x^{2} (x-1)-22x(x-1)+120(x-1)
(x-1) ( x^{2} -22x+120)
(x-1) ( x^{2} -12x-10x+120)
(x-1) (x(x-12)-10(x-12))
(x-1) (x-10) (x-12)
Answered by
0
Answer:
We know that if the sum of the coefficients is equal to 0 then (x-1) is one of the factors of given polynomial.
x-1 = 0
x = 1
Put x=1,
(1)³-23(1)²+142(1)-120
→ 1-23+142-120
→ 120-120
→ 0
Therefore,(x-1) is a factor of the given polynomial.
Now the factors are (x-1) and (x²-22x+120) {see pic for knowing how (x²-22x+120) is a factor}
Now factorise x²-22x+120
x²-22x+120
→ x²-12x-10x+120
→ x(x-12)-10(x-12)
→ (x-12)(x-10)
Therefore, x²-22x+120 = (x-12)(x-10)
The factors of x³-23x²+142x-120 = (x-1)(x-12)(x-10)
Hope it helps....…
Similar questions