factorise x^3-343y^3+512z^2+168xyz
Answers
Answered by
0
Answer:
(x-7y+8z) (x²+49y²+64z²+7xy+56yz-8zx)
Step-by-step explanation:
Let F=x³-343y³+512z³+168xyz
F=x³+(-7y)³+(8z)³-3*(x)*(-7y)*(8z)
let x=a, -7y=b, and 8z=c
Then F=a³+b³+c³-3abc
We know that
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Hence F=(a+b+c)(a²+b²+c²-ab-bc-ca)
putting value of a,b, c
F=(x-7y+8z)[ x²+(-7y)²+(8z)²-x(-7y)-(-7y)(8z)-x(8z) ]
=(x-7y+8z) (x²+49y²+64z²+7xy+56yz-8zx)
Similar questions