factorise:
x^3-3x^2-9x-5
Answers
Answer:
( x + 1 ), ( x - 5 ) and ( x + 1 ) are the factors of given polynomial .
Step-by-step explanation:
x^3 - 3x^2 - 9x - 5
= x^3 + x^2 - 4x^2 - 4x - 5x - 5
= x^2 ( x + 1 ) - 4x ( x + 1 ) - 5( x + 1 )
= ( x + 1 ) . ( x^2 - 4x - 5 )
= ( x + 1 ) . ( x^2 - 5x + x - 5 )
= ( x + 1 ) . { x ( x - 5) + 1 ( x - 5 ) }
= ( x + 1 ) . ( x - 5 ) . ( x + 1 )
∴ ( x + 1 ), ( x - 5 ) and ( x + 1 ) are the factors of given polynomial .
Step-by-step explanation:
Given Equation is x^3 - 3x^2 - 9x - 5
= > x^3 - 4x^2 + x^2 - 5x - 4x - 5
= > x^3 - 4x^2 - 5x + x^2 - 4x - 5
= > x(x - 4x - 5) + 1(x^2 - 4x - 5)
= > (x + 1)(x^2 - 4x - 5)
= > (x + 1)(x^2 + x - 5x - 5)
= > (x + 1)(x(x + 1) - 5(x + 1))
= > (x + 1)(x + 1)(x - 5)
= > (x + 1)^2(x - 5).
Hope this helps!