Math, asked by parthagarwal8287, 1 year ago

Factorise x(3x - y) - 5y(3x - y) - z(3x - y)

Answers

Answered by yug112
4
(X-5y-z)(3x-y) is the answer
Answered by charliejaguars2002
9

Answer:

\large\boxed{3x^2-16xy+5y^2-3xz+yz}

Step-by-step explanation:

To solve this problem, first you have to use distributive property.

Given:

x(3x-y)-5y(3x-y)-z(3x-y)

Solutions:

First, expand the form by using with distributive property.

\large\boxed{\textnormal{Distributive property}}

\displaystyle a(b+c)=ab+ac

\displaystyle x(3x-y)

A=X

B=3x

C=Y

Solve.

\displaystyle x*3x-xy

\displaystyle 3xx-xy

\displaystyle 3xx=3x^2

\displaystyle 3x^2-xy

Rewrite the problem down.

\displaystyle 3x^2-xy-5y(3x-y)-z(3x-y)

Secondly, expand.

\displaystyle -5y(3x-y)

Multiply from left to right.

\displaystyle -5*3=-15

\displaystyle -5y*y=5y^2

\displaystyle =-15xy+5y^2

\displaystyle 3x^2-xy-15xy+5y^2-z(3x-y)

Then, expand.

\displaystyle -z(3x-y)=-3xz+yz

\displaystyle 3x^2-xy-15xy+5y^2-3xz+yz

Add numbers from left to right.

Add similar elements from left to right.

\displaystyle -xy-15xy=-16xy

\large\boxed{3x^2-16xy+5y^2-3xz+yz}

Therefore, the final answer is 3x²-16xy+5y²-3xz+yz.

Similar questions